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Transition metal-catalyzed-6N bond formation is of immense  Scheme 1. Pd(ll)-Catalyzed ortho-Amidation of 2-Arylpyridine

interest due to the prevalence of amino groups in pharmaceuticals A

and bioactive natural products\otable achievements in catalytic | P 5 mol% Pd(OAc), | D NHCOR'

C—H bond amidation have been achieved by using Ru and Rh N K»S,0g, HoNCOR, DCE N”

catalysts with hypervalent iodine reagents and sulfonylaniifes. R R'=0CHj3 CF; R

According to the reports by CReDubois? and otherdce these R=H, CH; (A1) (A2)

catalytic systems involve reactive metamido/nitrene species,  Table 1. Pd-Catalyzed ortho-Amidation of Aromatic Oximes?

which undergo insertion to-€H bonds. The reactivity for nitrene =¥ substrate amide product conversion_yield”

C—H bond insertion follows the order of°3> 2° > 1° bond, , ©/*N’°CH3 HNCO,CHs CC\ N'?g‘:” 100%  92%

paralleling the order of increasing-E bond dissociation energiés. (1a) (A1) NHCO,CHs

However, catalytic systems that can effect amidation of unactivated CHs CH,

aromatic and aliphatic®XC—H bonds are sparse in the literatéfg:* 2 ©/KN’OCH3 A1 @N'OCHa

Recently, chelation directed/assisted transition-metal-catalyzédl C (1b) Moo 100% 9%

functionalization is receiving growing attentién’. We are attracted CHs CHz

to a seminal work by Sanford and co-workérsho showed that 3 /@AN’OCHa A1 /@f‘\\n'c’c”ﬁ

oxime and pyridine groups can direct highly regio- and chemo- | (1e) | NHoOLaH 0% 8T

selective Pd(ll)-catalyzeft-acetoxylation of spand s C—H bonds Ny -OCHs Sy -OCHs

with PhI(OAc), as a stoichiometric oxidant. We envisioned that 4 m At /CC (1d-A1) 1000%  95%
HaC HaC NHCO,CHs

cafscade €H bond Qctivati_on vig Pd(OAg)mediated cyclometa_— N.OCH, N-OCHs
lation followed by nitrene insertion reactions could be a plausible s mN H,NCOCF3 (1e-A2) 100%  96%
HsCO
Cl

3

(A2)

approach for selective amidation of @r 2° C—H bonds. Prior to HsC o NHCOCF;3

this study, we observed that Pd(ll) complexes, such as palladium N OCH, A1 Nyy-OCHs

carboxylates and [Pd(TTP)] [HITP = tetrakisp-tolyl)porphyrin], m" (1f-A1)  100%  88%

can catalyze intramolecular nitrene-@ insertion23 which may o BN

occur via reactive Pd(ltynitrene species. During the course of this 7 Br\©/*n'°°”3 A1 \©\/\N;1Q_Ai) ——

study, Buchwald and co-workers described a related Pd-catalyzed fta) NHCO,CHs

cyclization of 2-acetaminobiphenyl fd-acetyl carbazolé? Hﬁcojijﬁ\u’ocH3 HGCOD\A\N(’%C_;';) % ot
Our investigation began by examining the intermolecular ami- ~ ° HyCO an A2 HsCO NHCOCFs ’

dation reaction of 2-phenylpyridine (Scheme 1). A series of HsCOL HsCONY  \HCO,CH

catalysts, oxidants, and nitrene sources were screened (see Sup-g ' | ] 8% 0%

porting Information). Thus, under the optimized conditions [Pd- (i Al (-A1)

(OAC), (5 mol %), trifluoroacetamideA2, 1.2 equiv), kS;0g (5

equiv), MgO (2 equiv), DCE, 80C, 7 h], theortho-amidated aConditions: 1 equiv of substrate, 1.2 equiv of A1/A2, 5 mol % of

. . H f o b .
product N-(2-pyridylphenyl)-2,2,2-trifluoroacetamide, was obtained PA(OACk: 5 equiv of KS,0g in DCE, 80°C, 14-20 h.? Isolated yield.
in 92% isolated yield. The molecular structurel{5-methyl-2- ~ Scheme 2. Effect of Amides on Amidation of 1b

pyridylphenyl)-2,2,2-trifluoroacetamide has been established by CHs Pd(OAC); (5 mol%) CHs

X-ray crystallography (Supporting Information). It is noteworthy S -OCHs Amides (1.2 equiv) @ﬁ\\N/OCHS

that this protocol was conductedthout the need for aifmoisture- (1b) K28,0s (5 equiv) NH’Q"'A“ -6))

proof conditions. DCE, 80°¢ 68 - 95% yield
Apart from 2-arylpyridinesO-methyl oximes were examined R = CO,CHj, (A1), COCF;, (A2), CO,'Bu (A3), SO,CHs (A4),

for the Pd-catalyzed amidation reaction, and the results are listed §0,(p-Cl-CgHy) (A5), COCHC=CHCgH4 (A6)

in Table 1.0-Methyl oximes derived from benzaldehyde, acetophe- Al was obtained exclusively in 92% yield (entry 7). The analogous
none, andpara-substituted benzaldehydes were effectively con- catalytic ortho-amidation reactions of sterically hindered oximes

verted to their corresponding anilides by regioseleabrtbo-C—H were found to be sluggish. For example, when 3,5-dimethoxybenzyl-

amidation (entries 45). Notably, the C-| bond is well tolerated aldehyde O-methyl oxime was employed as substrate]l0%

in our Pd-catalyzed protocol; chemo- and regioselectwo- conversion was registered based'®shNMR analysis of the crude

amidation of 4-iodoacetophenof@methyl oxime (c) was achieved mixture.

in 87% yield (entry 3). When oxime derived from 3-bromobenzyl- As shown in Scheme 2,°lamides, including carbamates,

aldehyde 1g) was employed as substrate, the 2,4-regioisatger acetamides, and sulfonamides, are effective nucleophiles for the
Pd-catalyzeartho-amidation oflb. Interestingly, amides bearing

T Current address: Department of Applied Biology and Chemical Technology, . )
The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong. a C=C bond, such as cinnamidé&g), can be employed for the
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Table 2. Pd-Catalyzed ortho-Amidation of Aliphatic Oximes?2

entry substrate amide product yield®
N~ N
1 4 OCHs  H,NSO,(p-Cl-CeHa) %/\ OCHj3 (2a-A5) 68%
[z (2a) (A5) NHSO,(p-Cl-CgHa)
N~ocH N-ocH
Vi 3 7 3 (2b-A2)
2 (2b) HNCOCFs NHCOCF, 89%
(A2)
NHSO,(p-Cl-CgHy)
3 N. (2c-A5) 93%
/(2 )OCHs A5
C
HaCOL 000
HaCO., | 2d-ns) 6%
4 2 AS \/\)\/\
\/\)\/ NHSO(p-Cl-CeHy)
S
X
| A5 L (2e-A5) 79%°

5

P

N

(2e) N(SOy(p-Cl-CgHg))2

aConditions: 1 equiv of substrate, 1.2 equiv of A2/A5, 5 mol % of Pd-
(OAC),, 5 equiv of KS,05in DCE, 80°C, 14-20 h. b Isolated yield.c Ob-
tained as arE/Z mixture.d Yield based on 77% conversiohSee ref 8.

Scheme 3. Mechanistic Proposal for the Amidation Reaction

| N
Pd(OAG), Y Ciopalladation cyclopalladation | N/
' ROCHN

(A) mtrene insertion
into Pd C bond

(B) Pd II) nitrene

Scheme 4. Conversion of Benzamide to Methyl
N-(2-Methoxyphenyl)carbamate

HsCO._O
9 1) Oxidation by K,S,0g H Pd-catalyzed
NH to form nitrene N._OCHgortho-methoxylation NH
2 2) Curtius Rearrangement ©/ T (:[
to isocyanate o OCH3

3) MeO

amidation of1b, and theortho-amidated producttb—A6 was
formed in 68% vyield. However, benzamide; amides (e.g.,
pyrrolidinone, succinimide\-methylformamide) and12° amines
are found to be ineffective nucleophiles for ti¢ho-amidation of
1b, and the substrate was recovered quantitatively.

Importantly, catalytic amidation of unactivated®$p—H bonds
has also been achieved (Table 2). Employing the following
protocol: [Pd(OAc) (5 mol %), sulfonamideA5 (1.2 equiv),
K>S,0s (5 equiv), DCE, 8C°C], aliphaticO-methyl oximes 2a—

d) would undergo regioselectiy&amidation of a 1 sp* C—H bond

to give the corresponding monoamidated product i 88% yield
(entries 1-4). Amidation at the 2sp® C—H bond was not observed.
No diamidation product was obtained even employing excess
nucleophile (5 equiv). The observed preference for activation of
1° C—H bond versus 2C—H bonds is probably due to steric effect.

As depicted in Scheme 3, we propose that the Pd-catalyzed
amidation reaction is initiated by chelation-directed cyclopalladation
to form 3 (in the case of 2-phenylpyridin€); followed by nitrene
insertion to the P& C bond.

To probe the intermediacy of nitrene species, we treated
benzamide with 2-phenylpyridine employing the “Pd(OAe)
K,S,0g” protocol in the presence of methanol (3 equiv), and methyl
N-(2-methoxyphenyl)carbamate was obtained in 55% yield without
formation of any amidation product (Scheme®4ljhe carbamate
formation is best accounted for by a nitrene intermediate which
underwent Curtius rearrangement to isocyanate. Nucleophilic attack
of the isocyanate by methanol gave metNyphenylcarbamate, and
subsequent €H activationbrtho-methoxylation gave methy-(2-
methoxyphenyl)carbamate as the product.

At this juncture, the nature of the nitrene intermediate remains
uncertain: metal-free (Scheme 3, path A) versus metal-bound
(Scheme 3, path B) nitrene. Reactive Pdfhjtrene species
(alternative formulation of a Pd(I\Aimido species cannot be
excluded) is evidenced by the following: (1) analogy of the
reactivity of Pd(TTP) and Ru(Por) (Pet porphyrinato dianion)

in the catalytic intramolecular nitrene-& bond insertion reaction;

(2) some Pd(IV) complexes have been characterized from reactions
involving strong oxidant§®1°and (3) examples of Pd imiétand

Pd nitrenét®c complexes are known in the literature.

We also noted that treatment 8fwith excess of PFNSO,-
(p-Cl—CgH,) or stoichiometric PR=NSO,(p-Cl—CgH,4) and 1 mol
% of [Ru(TTP)(CO)] gave a yellow complex. This complex has
the “3 + [NSO,(p-Cl—C¢H,)]” formulation based on ESI-MS
analysis? Treating this yellow complex with HCI afforded the
corresponding monoamidated product of 2-phenylpyridine in 85%
yield (based on the amount 8femployed).

In conclusion, a catalytic alkane amidation protocol based on
cascade chelation-directed cyclopalladation/amidation reactions was
developed. This protocol enables intermolecular amidation of
unactivated spand sg C—H bonds with remarkable regio- and
chemoselectivities. Further investigation on the scope and the
mechanism of the reaction is in progress.
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